专为高中生提供有价值的资讯
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
设函数f(x)是某一个实数集A上有定义,如果存在正数M 对于一切X∈A都有不等式|f(x)|≤M的则称函数f(x)在A上有界,如果不存在这样定义的正数M则称函数f(x)在A上无界 设f为定义在D上的函数,若存在数M(L),使得对每一个x∈D有: ƒ(x)≤M(ƒ(x)≥L)
则称ƒ在D上有上(下)界的函数,M(L)称为ƒ在D上的一个上(下)界。
根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。又若M(L)为ƒ在D上的上(下)界,则任何大于(小于)M(L)的数也是ƒ在D上的上(下)界。根据确界原理,ƒ在定义域上有上(下)确界。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告