专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学高中数学知识点顺口溜 怎么记忆数学知识点

高中数学知识点顺口溜 怎么记忆数学知识点

时间:2021-09-18作者:倾心~九月一键复制全文保存为WORD
专题:

有很多的同学是非常想着知道,高中数学知识点有哪些,小编整理了相关信息,希望会对大家有所帮助!

高中数学知识点顺口溜是什么

数学思想方法总论

高中数学一线牵,代数几何两珠连,

三个基本记心间,四种能力非等闲。

常规五法天天练,策略六项时时变,

精研数学七思想,诱思导学乐无边。

一线:函数一条主线(贯穿教材始终)

二珠:代数、几何珠联璧合(注重知识交汇)

三基:方法(熟) 知识(牢) 技能(巧)

四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)

五法:换元法、配方法、待定系数法、分析法、归纳法。

六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。

七思想:函数方程最重要,分类整合常用到。

数形结合千般好,化归转化离不了。

有限自将无限描,或然终被必然表。

特殊一般多辨证,知识交汇步步高。

数学知识方法分论

集合与逻辑

集合逻辑互表里,子交并补归全集。

对错难知开语句,是非分明即命题。

纵横交错原否逆,充分必要四关系。

真非假时假非真,或真且假运算奇。

函数与数列

数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开。

变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

三角函数

三角定义比值生,弧度互化实数融;

同角三类善诱导,和差倍半巧变通。

解前若能三平衡,解后便有一脉承;

角值计算大化小,弦切相逢异化同。

方程与不等式

函数方程不等根,常使参数范围生;

一正二定三相等,均值定理最值成。

参数不定比大小,两式不同三法证;

等与不等无绝对,变量分离方有恒。

解析几何

联立方程解交点,设而不求巧判别;

韦达定理表弦长,斜率转化过中点。

选参建模求轨迹,曲线对称找距离;

动点相关归定义,动中求静助解析。

立体几何

多点共线两面交,多线共面一法巧;

空间三垂优弦大,球面两点劣弧小。

线线关系线面找,面面成角线线表;

等积转化连射影,能割善补架通桥。

排列与组合

分步则乘分类加,欲邻需捆欲隔插;

有序则排无序组,正难则反排除它。

元素重复连乘法,特元特位你先拿;

平均分组阶乘除,多元少位我当家。

二项式定理

二项乘方知多少,万里源头通项找;

展开三定项指系,组合系数杨辉角。

整除证明底变妙,二项求和特值巧;

两端对称谁最大?主峰一览众山小。

概率与统计

概率统计同根生,随机发生等可能;

互斥事件一枝秀,相互独立同时争。

样本总体抽样审,独立重复二项分;

随机变量分布列,期望方差论伪真。

高中数学常用知识点

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

3.注意下列性质:

(3)德摩根定律:

4.你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6.命题的四种形式及其相互关系是什么?

(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。)

8.函数的三要素是什么?如何比较两个函数是否相同?

(定义域、对应法则、值域)

9.求函数的定义域有哪些常见类型?

10.如何求复合函数的定义域?

义域是_____________。

11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12.反函数存在的条件是什么?

(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

13.反函数的性质有哪些?

①互为反函数的图象关于直线y=x对称;

②保存了原来函数的单调性、奇函数性;

14.如何用定义证明函数的单调性?

(取值、作差、判正负)

如何判断复合函数的单调性?

∴……)

15.如何利用导数判断函数的单调性?

值是()

A.0B.1C.2D.3

∴a的最大值为3)

16.函数f(x)具有奇偶性的必要(非充分)条件是什么?

(f(x)定义域关于原点对称)

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17.你熟悉周期函数的定义吗?

函数,T是一个周期。)

如:

18.你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19.你熟练掌握常用函数的图象和性质了吗?

的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

由图象记性质!(注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20.你在基本运算上常出现错误吗?

21.如何解抽象函数问题?

(赋值法、结构变换法)

22.掌握求函数值域的常用方法了吗?

(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)

如求下列函数的最值:

23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

24.熟记三角函数的定义,单位圆中三角函数线的定义

25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

(x,y)作图象。

27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

29.熟练掌握三角函数图象变换了吗?

(平移变换、伸缩变换)

平移公式:

图象?

30.熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

A.正值或负值B.负值C.非负值D.正值

31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

具体方法:

(2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

(应用:已知两边一夹角求第三边;已知三边求角。)

33.用反三角函数表示角时要注意角的范围。

34.不等式的性质有哪些?

答案:C

35.利用均值不等式:

值?(一正、二定、三相等)

注意如下结论:

36.不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等)

并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始

39.解含有参数的不等式要注意对字母参数的讨论

40.对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)

42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43.等差数列的定义与性质

0的二次函数)

项,即:

44.等比数列的定义与性质

46.你熟悉求数列通项公式的常用方法吗?

例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47.你熟悉求数列前n项和的常用方法吗?

例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48.你知道储蓄、贷款问题吗?

△零存整取储蓄(单利)本利和计算模型:

若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)

若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p——贷款数,r——利率,n——还款期数

49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

50.解排列与组合问题的规律是:

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是()

A.24B.15C.12D.10

解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

∴共有5+10=15(种)情况

51.二项式定理

性质:

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

表示)

52.你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53.对某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品,求下列事件的概率。

(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。

解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

要熟悉样本频率直方图的作法:

(2)决定组距和组数;

(3)决定分点;

(4)列频率分布表;

(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56.你对向量的有关概念清楚吗?

(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。

(9)向量的坐标表示

表示。

57.平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

[练习]

答案:

答案:2

答案:

58.线段的定比分点

※.你能分清三角形的重心、垂心、外心、内心及其性质吗?

59.立体几何中平行、垂直关系证明的思路清楚吗?

平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

60.三类角的定义及求法

(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

[练习]

(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。

①求BD1和底面ABCD所成的角;

②求异面直线BD1和AD所成的角;

③求二面角C1—BD1—B1的大小。

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)

61.空间有几种距离?如何求距离?

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

如:正方形ABCD—A1B1C1D1中,棱长为a,则:

(1)点C到面AB1C1的距离为___________;

(2)点B到面ACB1的距离为____________;

(3)直线A1D1到面AB1C1的距离为____________;

(4)面AB1C与面A1DC1的距离为____________;

(5)点B到直线A1C1的距离为_____________。

62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?

正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63.球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!

(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

积为()

答案:A

64.熟记下列公式了吗?

(2)直线方程:

65.如何判断两直线平行、垂直?

66.怎样判断直线l与圆C的位置关系?

圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

67.怎样判断直线与圆锥曲线的位置?

68.分清圆锥曲线的定义

70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

71.会用定义求圆锥曲线的焦半径吗?

如:

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。

72.有关中点弦问题可考虑用“代点法”。

答案:

73.如何求解“对称”问题?

(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

75.求轨迹方程的常用方法有哪些?注意讨论范围。

(直接法、定义法、转移法、参数法)

76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

小编推荐

相关文章

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告