专为高中生提供有价值的资讯
在数学函数知识的学习时,特殊三角函数是同学们需要着重记忆的知识点,例如sina=0,cosa=1,tana=0等都是需要同学们记下来并会相应的推导公式的。
0度
sina=0,cosa=1,tana=0
30度
sina=0,cosa=√3/2,tana=√3/3
45度
sina=√2/2,cosa=√2/2,tana=1
60度
sina=√3/2,cosa=1/2,tana=√3
90度
sina=1,cosa=0,tana不存在
120度
sina=√3/2,cosa=-1/2,tana=-√3
150度
sina=1/2,cosa=-√3/2,tana=-√3/3
180度
sina=0,cosa=-1,tana=0
270度
sina=-1,cosa=0,tana不存在
360度
sina=0,cosa=1,tana=0
三角函数常用公式:(^表示乘方,例如^2表示平方)
正弦函数sinθ=y/r余弦函数;cosθ=x/r;正切函数tanθ=y/x;余切函数cotθ=x/y;正割函数secθ=r/x;余割函数cscθ=r/y
同角三角函数间的基本关系式:
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函数恒等变形公式:
两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
三角函数公式最基本的只有两个:
sin(α+/-β)=sinαcosβ+/-cosαsinβ
cos(α+/-β)=cosαcosβ-/+sinαsinβ
这两个公式当然可以证明,而且数学课本上应该有证明。其他的所有公式,包括和差倍半、诱导公式、和差化积、积化和差,全部都是这两个公式的衍生品。
举一例:tan(α+β)=sin(α+β)/cos(α+β)=(sinαcosβ+cosαsinβ)/(cosαcosβ-sinαsinβ)=(tanα+tanβ)/(1-tanαtanβ)(上下同除cosα cosβ)。这两个公式就是那一大堆公式的牛鼻子,记牢了就行了。至于剩下的,能记住,做题省点时间;记不住,拿这两个现场推。当然,要想拿这两个去推诱导公式的话,90°、180°、270°那些角的函数值得自己记住。记住两个,总比一下要记二十几个容易得多。
另外还有万能公式的推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)),(因为cos^2(α)+sin^2(α)=1),再把分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)),然后用α/2代替α即可,同理可推导余弦的万能公式,正切的万能公式可通过正弦比余弦得到。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告