专为高中生提供有价值的资讯

当前位置:来高考高考资讯高考新闻勾股数的变式及应用

勾股数的变式及应用

时间:2021-03-10作者:流氓鼠一键复制全文保存为WORD
专题:

一、勾股数的变式及应用

1、勾股定理

(1)文字语言

直角三角形两直角边的平方和等于斜边的平方。

(2)符号语言

如果直角三角形的两条直角边长分别为$a$,$b$,斜边长为$c$,那么$a^2+$$b^2=$$c^2$。

(3)变式及应用

设直角三角形的两条直角边长分别为$a$,$b$,斜边长为$c$,则

$a^2=c^2-b^2$,$b^2=c^2-a^2$,

$c=\sqrt{a^2+b^2}$,$a=\sqrt{c^2-b^2}$,$b=\sqrt{c^2-a^2}$。

2、勾股定理的逆定理

如果三角形的三边长 $a$,$b$,$c$满足$a^2+$$b^2=$$c^2$,那么这个三角形是直角三角形。

3、勾股数

能够成为直角三角形三条边长的三个正整数,称为勾股数。若$a$,$b$,$c$是一组勾股数,则$ak$,$bk$,$ck$($k$是正整数)也是一组勾股数。

4、勾股定理的应用

(1)已知直角三角形的两边,求第三边。

(2)表示长度为无理数的线段。

(3)在数轴上作出表示无理数的点。

注:勾股定理只适用于直角三角形,所以常作辅助线——高,从而构造直角三角形。

二、勾股数的相关例题

下列各组数$a$,$b$,$c$不是勾股数的是___

A.$a=3$,$b=4$,$c=5$

B.$a=30$,$b=40$,$c=50$

C.$a=8$,$b=15$,$c=17$

D.$a=7$,$b=14$,$c=15$

答案:D

解析:A.$3^2+4^2=5^2$,本组数是勾股数。B.$30^2+40^2=50^2$,本组数是勾股数。C.$8^2+15^2=17^2$,本组数是勾股数。D.$7^2+14^2≠15^2$,本组数不是勾股数。故选D。

小编推荐

相关文章

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告