专为高中生提供有价值的资讯
定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等。理把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角。因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,把每一份这样得到的弧叫做1°的弧。所以是正确的。
计算公式
①L(弧长)=(r/180)XπXn(n为圆心角度数,以下同);
②S(扇形面积) = (n/360)Xπr2;
③扇形圆心角n=(180L)/(πr)(度)。
④K=2Rsin(n/2) K=弦长;n=弦所对的圆心角,以度计。
性质
①顶点是圆心;
②两条边都与圆周相交。
③圆心角性质:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等。在同圆或等圆中,圆心角、圆心角所对的弦、圆心角所对的弧和对应弦的弦心距,四对量中只要有一对相等,其他三对就一定相等。
④一条弧的度数等于它所对的圆心角的度数。
⑤半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
定理
圆心角的度数等于它所对的弧的度数。
与弧、弦、弦心距的关系
在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。
理解:(定义)
(1)等弧对等圆心角
(2)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角。
(3)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧。
(4)圆心角的度数和它们对的弧的度数相等。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告