专为高中生提供有价值的资讯
arctanx等同于1/(1+x²)。设x=tant则,t=arctanx,两边求微分,所以上式t'=1/(1+x²)。
设x=tant,则t=arctanx,两边求微分
dx=[(cos²t+sin²t)/(cos²x)]dt
dx=(1/cos²t)dt
dt/dx=cos²t
dt/dx=1/(1+tan²t)
因为x=tant
所以上式t'=1/(1+x²)
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告