专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学勾股定理的证明方法

勾股定理的证明方法

时间:2020-03-13作者:赵乐玮一键复制全文保存为WORD
专题:

最常见的勾股定理证明方法是欧几里得证明,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在欧氏《几何原本》中,勾股定理的证明方法是:以直角三角形的三条边为边,分别向外作正方形,然后利用面积方法加以证明。如图,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等,即

在这个定理的证明中,我们需要如下四个辅助定理:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

三角形面积是任一同底同高之平行四边形面积的一半,如。

任意一个正方形的面积等于其两边长的乘积。

任意一个矩形的面积等于其两边长的乘积。

证明的方法如下:

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成正方形CBDE、BAGF和ACIH。如上图,

画出过点A与BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A、K和L在同一直线上,所以四边形面积。

因为C、A和G在同一直线上,所以正方形面积。

因此=AB²。

同理可证,=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

小编推荐

相关文章

  • 向量点乘公式

    向量的点乘a*b公式:a*b=|a|*|b|*sinθ,sin是a,b的夹角,取值[0,π]。向量积|c|=|a×b|=
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告