专为高中生提供有价值的资讯
辅助角公式表达为asinx+bcosx=√(a²+b²)sin[x+\arctan(b/a)](a>0),是一种高等三角函数公式。
辅助角公式的主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。辅助角公式的内容是asinx+bcosx=√(a²+b²)sin[x+\arctan(b/a)](a>0)。
很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,分母的位置永远是你用来表示函数名称的系数。
例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告