专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学特殊三角函数值及基本公式

特殊三角函数值及基本公式

时间:2018-07-29作者:回头辗转过去一键复制全文保存为WORD
专题:

特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。

特殊三角函数值

α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

特殊三角函数公式

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系

tanα=sinα/cosα

cotα=cosα/sinα

积化和差公式

sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)*[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)*[cos(α+β)+cos(α-β)]

sinα·sinβ=(1/2)*[cos(α+β)-cos(α-β)]

和差化积公式

sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2]

sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]

cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2]

cosα-cosβ=-2*[sin(α+β)/2]*[sin(α-β)/2]

三倍角公式

sin(3α)=3sinα-4sin^3α=4sinα·sin(60°+α)sin(60°-α)

cos(3α)=4cos^3α-3cosα=4cosα·cos(60°+α)cos(60°-α)

tan(3α)=(3tanα-tan^3α)/(1-3tan^2α)=tanαtan(π/3+α)tan(π/3-α)

两角和与差

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)==(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

小编推荐

相关文章

  • 三角形面积公式是什么 怎么算

    三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告