专为高中生提供有价值的资讯
高中数学一向是很多人头疼的科目,那么小编总结了高中数学的经典试题,供大家参考。
则f(g(π))的值为()
a.1
b.0
c.-1
d.π
解析:
∵g(π)=0,∴f[g(π)]=f(0)=0,选b.
答案:b
若f(x)=3,则x的值是()
a.1
b.1或3/2
c.1,3/2或±√3
d.√3
解析:当x≤-1时,f(x)的值域为(-∞,1];当-1
答案:d
突破函数解析式求法的方法
(1)已知f(x+1/x)=x?2;+1/x?2;求f(x)的解析式;
(2)已知f(2/x+1)=lgx,求f(x)的解析式;
(3)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式;
(4)已知f(x)满足2f(x)+f(1/x)=3x,求f(x)的解析式.
解析:
(1)令x+x/1=t,则t?2;=x?2;+1/x?2;+2≥4.
∴t≥2或∴f(t)=t?2;-2,即f(x)=x?2;-2(x≥2或x≤-2).
(2)令2/x+1=t,由于x>0,
∴t>1且x=2/(t-1),
∴f(t)=lg{2/(t-1)},即f(x)=lg{2/(x-1)}(x>1).
(3)设f(x)=kx+b,
∴3f(x+1)-2f(x-1)
=3[k(x+1)+b]-2[k(x-1)+b]
=kx+5k+b=2x+17.
t≤-2且x?2;+1/(x?2;)=t?2;-2,
以上就是小编整理的关于高中数学经典试题,供大家参考,希望对大家有所帮助。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告