专为高中生提供有价值的资讯
令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。通过向量组的正交性研究向量组的相关性。当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关。
1、向量a1,a2,…,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。
定义:如果向量组α1,α2,……,αs(s≥2)中有一个向量可以由其余的向量线性表示,那么向量组α1,α2,……,αs称为线性相关的。
例如,向量组α1=(2,-1,3,1),α2=(4,-2,5,2),α3=(2,-1,4,-1)是线性相关的,因为α3=3α1-α2。
注:由定义可知,任意一个包含零向量的向量组一定是线性相关的。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告