专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学矩阵不可逆行列式一定为0吗

矩阵不可逆行列式一定为0吗

时间:2021-10-29作者:阳光一键复制全文保存为WORD
专题:

矩阵不可逆行列式一定为0,矩阵不可逆,一定有一个特征值是0。因为若矩阵不可逆,可矩阵的行列式为为0,又因为矩阵的行列式等于所有特征值的乘积,故必有一个特征值为0。

矩阵不可逆行列式过程

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

矩阵不可逆的条件

1.|A| = 0

2.A的列(行)向量组线性相关

3.R(A)<n

4.AX=0 有非零解

5.A有特征值0

6.A不能表示成初等矩阵的乘积

7.A的等价标准形不是单位矩阵

小编推荐

相关文章

  • 中位数怎么求 方法是什么

    中位数,又称中点数,中值。中位数是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,有一半的数据比他大,有一半的数
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告