专为高中生提供有价值的资讯
法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。
三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangent plane)的向量。
法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。
如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。
垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。
直线的方向向量是用直线上任意两点坐标相减得到的向量,直线的法向量是与方向向量相垂直的向量。数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量。有方向与大小,分为自由向量与固定向量。数学中,把只有大小但没有方向的量叫做数量,物理中称为标量。例如距离、质量、密度、温度等。
方向向量就是用直线上任意两点坐标相减得到的向量,法向量是与方向向量相垂直的向量.譬如一直线有两点(1,2)(3,4)则方向向量为(2,1),设法向量为(a,x)则2a+x=0→x=-2a,即法向量为(a,-2a)
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告