专为高中生提供有价值的资讯
1-5 CCABD
6-10 CBBAD
11-12 CB
13.4
14.
15.2
16.②⑤或③④
17.解:(1)各项所求值如下所示
 =
= (9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.7)=10.0
(9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.7)=10.0
 =
= (10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10.3
(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10.3
 =
= x [(9.7-10.0)2 + 2 x (9.8-10.0)2 + (9.9-10.0)2 + 2 X (10.0-10.0)2 + (10.1-10.0)2+2 x (10.2-10.0)2+(10.3-10.0)2] = 0.36,
x [(9.7-10.0)2 + 2 x (9.8-10.0)2 + (9.9-10.0)2 + 2 X (10.0-10.0)2 + (10.1-10.0)2+2 x (10.2-10.0)2+(10.3-10.0)2] = 0.36,
 =
= x [(10.0-10.3)2 +3 x (10.1-10.3)2 +(10.3-10.3)2 +2 x (10.4-10.3)2+2 x (10.5-10.3)2+ (10.6-10.3)2] = 0.4.
 x [(10.0-10.3)2 +3 x (10.1-10.3)2 +(10.3-10.3)2 +2 x (10.4-10.3)2+2 x (10.5-10.3)2+ (10.6-10.3)2] = 0.4.
(2)由(1)中数据得 -
- =0.3,2
=0.3,2 ≈0.34
≈0.34
显然 -
- <2
<2 ,所以不认为新设备生产产品的该项指标的均值较旧设备有显著提高。
,所以不认为新设备生产产品的该项指标的均值较旧设备有显著提高。
18.解:(1)因为PD⊥平面ABCD,且矩形ABCD中,AD⊥DC,所以以 ,
, ,
, 分别为x,y,z轴正方向,D为原点建立空间直角坐标系D-xyz。
分别为x,y,z轴正方向,D为原点建立空间直角坐标系D-xyz。
设BC=t,A(t,0,0),B(t,1,0),M( ,1,0),P(0,0,1),所以
,1,0),P(0,0,1),所以 =(t,1,-1),
=(t,1,-1), =(
=( ,1,0),
,1,0),
因为PB⊥AM,所以 •
• =-
=- +1=0,所以t=
+1=0,所以t= ,所以BC=
,所以BC= 。
。
(2)设平面APM的一个法向量为m=(x,y,z),由于 =(-
=(- ,0,1),则
,0,1),则

令x= ,得m=(
,得m=( ,1,2)。
,1,2)。
设平面PMB的一个法向量为n=(xt,yt,zt),则

令 =1,得n=(0,1,1).
=1,得n=(0,1,1).
所以cos(m,n)= =
= =
= ,所以二面角A-PM-B的正弦值为
,所以二面角A-PM-B的正弦值为 .
.
19.(1)由已知 +
+ =2,则
=2,则 =Sn(n≥2)
=Sn(n≥2)
 +
+ =2
=2 2bn-1+2=2bn
2bn-1+2=2bn bn-bn-1=
bn-bn-1= (n≥2),b1=
(n≥2),b1=
故{bn}是以 为首项,
为首项, 为公差的等差数列。
为公差的等差数列。
(2)由(1)知bn= +(n-1)
+(n-1) =
= ,则
,则 +
+ =2
=2 Sn=
Sn=
n=1时,a1=S1=
n≥2时,an=Sn-Sn-1= -
- =
=
故an=
20.(1)[xf(x)]′=x′f(x)+xf′(x)
当x=0时,[xf(x)]′=f(0)=lna=0,所以a=1
(2)由f(x)=ln(1-x),得x<1
当0<x<1时,f(x)=ln(1-x)<0,xf(x)<0;当x<0时,f(x)=ln(1-x)>0,xf(x)<0
故即证x+f(x)>xf(x),x+ln(1-x)-xln(1-x)>0
令1-x=t(t>0且t≠1),x=1-t,即证1-t+lnt-(1-t)lnt>0
令f(t)=1-t+lnt-(1-t)lnt,则
f′(t)=-1- -[(-1)lnt+
-[(-1)lnt+ ]=-1+
]=-1+ +lnt-
+lnt- =lnt
=lnt
所以f(t)在(0,1)上单调递减,在(1,+∞)上单调递增,故f(t)>f(1)=0,得证。
21.解:(1)焦点 到
到 的最短距离为
的最短距离为 ,所以p=2.
,所以p=2.
(2)抛物线 ,设A(x1,y1),B(x2,y2),P(x0,y0),则
,设A(x1,y1),B(x2,y2),P(x0,y0),则
 ,
,
 ,且
,且 .
.
 ,
, 都过点P(x0,y0),则
都过点P(x0,y0),则 故
故 ,即
,即 .
.
联立 ,得
,得 ,
, .
.
所以 =
= ,
 , ,所以
,所以
 =
= =
= =
= .
.
而 .故当y0=-5时,
.故当y0=-5时, 达到最大,最大值为
达到最大,最大值为 .
.
22. (1)因为 C的圆心为(2,1),半径为1.故
C的圆心为(2,1),半径为1.故 C的参数方程为
C的参数方程为 (
( 为参数).
为参数).
(2)设切线y=k(x-4)+1,即kx-y-4k+1=0.故
 =1
 =1
即|2k|= ,4
,4 =
= ,解得k=±
,解得k=± .故直线方程为y=
.故直线方程为y= (x-4)+1, y=
 (x-4)+1, y= (x-4)+1
 (x-4)+1
故两条切线的极坐标方程为 sin
sin =
= cos
cos -
- +1或
+1或 sin
sin =
= cos
cos +
+  +1.
+1.
23.解:(l)a = 1时,f(x) = |x-1|+|x+3|, 即求|x-1|+|x-3|≥ 6 的解集.
当x≥1时,2x十2 ≥6,得x≥ 2;
当-3<x<1时,4≥6此时没有x满足条件;
当x≤-3时-2x-2≥6.得x≤-4,
综上,解集为(-∞,-4]U[2, -∞).
(2) f(x)最小值>-a,而由绝对值的几何意义,即求x到a和-3距离的最小值.
当x在a和-3之间时最小,此时f(x)最小值为|a+3|,即|a+3|>-a.
A≥-3时,2a+3>0,得a>- ;a<-3 时,-a-3>-a,此时a不存在.
;a<-3 时,-a-3>-a,此时a不存在.
综上,a>- .
.
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告