专为高中生提供有价值的资讯

当前位置:来高考高考资讯高考新闻二项式系数的性质和二项式系数和

二项式系数的性质和二项式系数和

时间:2021-03-01作者:乳此胸猛一键复制全文保存为WORD
专题:

一、二项式系数的性质和二项式系数和

1、二项展开式的通项

二项展开式的第$k$+1项$T_{k+1}=\mathrm{C}^k_na^{n-k}b^k(k\in{0,1,2,\cdots,n})$叫做二项展开式的通项。

注:(1)通项是二项展开式的第$k$+1项,而不是第$k$项。

(2)字母$b$的指数和组合数的上标相同,$a$与$b$的指数之和为$n$。

(3)展开式中第$k$+1项的二项式系数$\mathrm{C}^k_n$与第$k$+1项的系数不一定相等,只有在特殊情况下,它们的值才相等。

(4)求常数项、有理项和系数最大的项时,一般要根据通项公式对$k$进行讨论。

2、二项式系数的性质

(1)对称性

与首末两端“等距离”的两项的二项式系数相等,即$\mathrm{C}^m_n=\mathrm{C}^{n-m}_n(n=0,1,2,\cdots,n)$。

(2)增减性与最大值

增减性:当$k<\frac{n+1}{2}$时,$\mathrm{C}^k_n$是逐渐增大的;当$k>\frac{n+1}{2}$时,$\mathrm{C}^k_n$是逐渐减小的,且在中间取得最大值。

最大值:当$n$是偶数时,中间一项的二项式系数最大,最大值为$ \mathrm{C}^{\frac{n}{2}}n$;当$n$是奇数时,中间两项的二项式系数最大,最大值为$\mathrm{C}^{\frac{n-1}{2}}n$,$\mathrm{C}^{\frac{n+1}{2}}_n$。

3、二项式系数和

$(a+b)^n$的展开式中,各个二项式系数和等于$2^n$,即$\mathrm{C}^0_n+\mathrm{C}^1_n+\mathrm{C}^2_n+\cdots+\mathrm{C}^n_n=2^n$。

二项展开式中,各偶数项的二项式系数和等于各奇数项的二项式系数和,即有$\mathrm{C}^1_n+\mathrm{C}^3_n+\mathrm{C}^5_n+\cdots=\mathrm{C}^0_n+\mathrm{C}^2_n+\mathrm{C}^4_n+\cdots$=$2^{n-1}$。

二、二项式系数的相关例题

二项式$(2-x)^6$的展开式中含有$x^4$项的系数为___

A.90 B.80 C.60 D.30

答案:C

解析:二项式$(2-x)^6$的展开式中含有$x^4$项为$T_5=\mathrm{C}^4_62^2(-x)^4=60x^4$,系数为60,故选C。

小编推荐

相关文章

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告