专为高中生提供有价值的资讯

当前位置:来高考高考资讯高考新闻充分不必要条件的定义和判定方法

充分不必要条件的定义和判定方法

时间:2021-02-28作者:刘阳一键复制全文保存为WORD
专题:

一、充分不必要条件的定义和判定方法

1、定义

(1)充分不必要条件:一般地,如果有$p\Rightarrow q$且$q\nRightarrow p$,此时,我们说$p$是$q$的充分不必要条件。

(2)必要不充分条件:一般地,如果有$p\nRightarrow q$且$q\Rightarrow p$,此时,我们说$p$是$q$的必要不充分条件

(3)充要条件:一般地,如果既有$p\Rightarrow q$,又有$q\Rightarrow p$,就记作$p\Leftrightarrow q$。此时,我们说$p$是$q$的充分必要条件,简称充要条件。显然,如果$p$是$q$的充要条件,那么$q$也是$p$的充要条件。概括地说,如果$p\Leftrightarrow q$,那么$p$与$q$互为充要条件。

2、充分条件与必要条件的传递性

(1)若$p$是$q$的充分条件,$q$是$s$的充分条件,即$p\Rightarrow q$,$q\Rightarrow s$,则有$p\Rightarrow s$,即$p$是$s$的充分条件。

(2)若$p$是$q$的必要条件,$q$是$s$的必要条件,即$q\Rightarrow p$,$s\Rightarrow q$,则有$s\Rightarrow p$,即$p$是$s$的必要条件。

(3)若$p$是$q$的充要条件,$q$是$s$的充要条件,即$p\Leftrightarrow q$,$q\Leftrightarrow s$,即$p$是$s$的充要条件。

3、充分、必要条件的判定方法

(1)定义法

① 认清$p$与$q$;

② 找推式:判断是否有$“p\Rightarrow q”“q\Rightarrow p”$;

③ 根据推式找出结论。

(2)集合法

写出集合$A={x|p(x)}$及$B={x|q(x)}$,利用集合间的包含关系进行判断。

(3)用命题的等价性判断

利用$p\Rightarrow q$与$\lnot q\Rightarrow \lnot p$,$q \Rightarrow p$与$\lnot p\Rightarrow \lnot q$,$p \Leftrightarrow q$与$\lnot p\Leftrightarrow \lnot q$的等价关系判断,对于条件或结论是否定形式的命题,一般运用等价法。

(4)利用传递性判断

对于较复杂(如链式)关系,常利用$\Rightarrow$,$ \Leftarrow$,$\Leftrightarrow$,$\nRightarrow$等符号进行传递,根据这些符号所组成的图示就可以得出结论。

二、充分不必要条件的相关例题

设$p:x>1$,$q:2^x>1$,则$p$是$q$成立的___

A.充分不必要条件

B.必要不充分条件

C.充分不必要条件

D.既不充分也不必要条件

答案:A

解析:$q:2^x>1\Rightarrow x>0$。由$x>1$,则一定有$x>0$,反之$x>0$不一定能推出来$x>1$。即$p$命题能推出$q$命题,$q$命题不能推出$p$命题。故$p$是$q$成立的充分不必要条件。

小编推荐

相关文章

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告