专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学切线方程的一般表达式

切线方程的一般表达式

时间:2020-10-19作者:我去一键复制全文保存为WORD
专题:

以P为切点的切线方程:y-f(a)=f'(a)(x-a);若过P另有曲线C的切线,切点为Q(b,f(b)),则切线为y-f(a)=f'(b)(x-a),也可y-f(b)=f'(b)(x-b),并且[f(b)-f(a)]/(b-a)=f'(b)。

切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。

1、如果某点在曲线上:

设曲线方程为y=f(x),曲线上某点为(a,f(a))

求曲线方程求导,得到f'(x),

将某点代入,得到f'(a),此即为过点(a,f(a))的切线斜率,

由直线的点斜式方程,得到切线的方程。y-f(a)=f'(a)(x-a)

2、如果某点不在曲线上:

设曲线方程为y=f(x),曲线外某点为(a,b)

求对曲线方程求导,得到f'(x)

设:切点为(x0,f(x0)),

将x0代入f'(x),得到切线斜率f'(x0),

由直线的点斜式方程,得到切线的方程y-f(x0)=f'(x0)(x-x0),

因为(a,b)在切线上,代入求得的切线方程,

有:b-f(x0)=f'(x0)(a-x0),得到x0,

代回求得的切线方程,即求得所求切线方程。

小编推荐

相关文章

  • 二次求导的意义是什么

    函数在某点的一阶导数表示函数图象在该点的切线的斜率,表达了函数值在该点附近的变化快慢,相应地,对函数二次求导,相当于对原
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告