专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学求导和微分的关系

求导和微分的关系

时间:2020-10-18作者:赵乐玮一键复制全文保存为WORD
专题:

微分是一种方法,就是取对象的微小变量或微元来处理数学问题,而导数是微元式的极限,所以数学上分别用符号⊿x和dx区分两者。导数的定义式很好的说明了两者的关系,例如df/dx=lim{⊿f/⊿x}=lim{(f(x+⊿x)-f(x))/⊿x} 表达式⊿f/⊿x,就是对函数f(x)在x处取微元⊿x和⊿f,来计算斜率,而当⊿x趋近于0时,⊿f/⊿x的极限就定义为导数。

微分应用:

1、我们知道,曲线上一点的法线和那一点的切线互相垂直,微分可以求出切线的斜率,自然也可以求出法线的斜率。

2、假设函数y=f(x)的图象为曲线,且曲线上有一点(x1,y1),那么根据切线斜率的求法,就可以得出该点切线的斜率m:m=dy/dx在(x1,y1)的值,所以该切线的方程式为:y-y1=m(x-x1)。由于法线与切线互相垂直,法线的斜率为-1/m且它的方程式为:y-y1=(-1/m)(x-x1)

3、增函数与减函数

微分是一个鉴别函数(在指定定义域内)为增函数或减函数的有效方法。

鉴别方法:dy/dx与0进行比较,dy/dx大于0时,说明dx增加为正值时,dy增加为正值,所以函数为增函数;dy/dx小于0时,说明dx增加为正值时,dy增加为负值,所以函数为减函数。

4、变化的速率

微分在日常生活中的应用,就是求出非线性变化中某一时间点特定指标的变化。

在t=3时,我们想知道此时水加入的速率,于是我们算出dV/dt=2/(t+1)^2,代入t=3后得出dV/dt=1/8。

小编推荐

相关文章

  • 二次求导的意义是什么

    函数在某点的一阶导数表示函数图象在该点的切线的斜率,表达了函数值在该点附近的变化快慢,相应地,对函数二次求导,相当于对原
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告