专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学周期函数怎么判断

周期函数怎么判断

时间:2020-08-04作者:太泛滥一键复制全文保存为WORD
专题:

三角函数的周期根据公式:弦函数的2π/w,切函数的π/w(w为正);一般的函数根据定义来判断,除了三角函数外,没有给出解析式的函数是周期的函数。推知周期,常见的周期情况有f(x+T)=f(x),周期为T,f(x+a)=-f(x),周期为2a。

周期函数的判定方法

1、根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。

例:f(X)=cosx 是非周期函数。

2、一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。

例:证f(X)=ax+b(a≠0)是非周期函数。

证:假设f(X)=ax+b是周期函数,则存在T(≠0),使true ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。

例:证f(X)= 是非周期函数。

证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。

例:证f(X)=sinx2是非周期函数

证:若f(X)= sinx2是周期函数,则存在T(>0),使之true,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2

T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。

小编推荐

相关文章

  • 为什么连续函数一定有原函数

    一般来说,连续函数必存在原函数,而存在原函数的函数不一定要求是连续函数。比如说存在第一类间断点(可去间断点、跳跃间断点)
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告