专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学二阶导数等于零的意义

二阶导数等于零的意义

时间:2019-12-16作者:忆锋一键复制全文保存为WORD
专题:

当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

二阶导数几何意义

(1)切线斜率变化的速度,表示的是一阶导数的变化率。

(2)函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。

这里以物理学中的瞬时加速度为例:

a=dv/dt=d²x/dt²根据定义有

可如果加速度并不是恒定的,某点的加速度表达式就为:

a=limΔt→0,Δv/Δt=dv/dt(即速度对时间的一阶导数)

又因为v=dx/dt,所以就有:

a=dv/dt=d²x/dt²,即元位移对时间的二阶导数

将这种思想应用到函数中,即是数学所谓的二阶导数

f'(x)=dy/dx (f(x)的一阶导数)

f''(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)

二阶导数的意义

简单来说,一阶导数是自变量的变化率,二阶导数就是一阶导数的变化率,也就是一阶导数变化率的变化率。

连续函数的一阶导数就是相应的切线斜率。一阶导数大于0,则递增;一阶倒数小于0,则递减;一阶导数等于0,则不增不减。

而二阶导数可以反映图象的凹凸。二阶导数大于0,图象为凹;二阶导数小于0,图象为凸;二阶导数等于0,不凹不凸。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于零,而二阶导数大于零时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点;当一阶导数、二阶导数都等于零时,为驻点。

小编推荐

相关文章

  • 一元三次方程快速解法有哪些

    一元三次方程快速解法有、因式分解法、一种换元法、卡尔丹公式法等多种方法,本篇我们将详细介绍其内容。因式分解法因式分解法不
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告