专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学柯西中值定理的几何意义

柯西中值定理的几何意义

时间:2019-12-15作者:陈少一键复制全文保存为WORD
专题:

几何意义:若令u=f(x),v=g(x),而[f(a)-f(b)]/[g(a)-g(b)]则是连接参数曲线的端点斜率...,所以[f(a)-f(b)]/[g(a)-g(b)]=f′(a)/f′(b)。

柯西中值定理的几何意义

f(t)和g(t)为t∈[a,b]上的函数。

[f(a)-f(b)]/[g(a)-g(b)]=f′(a)/f′(b)的证明如下

参数方程x=g(t),y=f(t);

x1-x2=g(a)-g(b);

y1-y2=f(a)-f(b);

(y1-y2)/(x1-x2)=[f(a)-f(b)]/[g(a)-g(b)];

dy/dx=[dy/dt]/[dx/dt]=f′(t)/f′(b);

(y1-y2)/(x1-x2)表示两点连线斜率;dy/dx表示之间某点斜率;

根据罗尔定律可知存在(y1-y2)/(x1-x2)=dy/dx

所以[f(a)-f(b)]/[g(a)-g(b)]=f′(a)/f′(b)

柯西中值定理

柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一。其几何意义为,用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。该定理可以视作在参数方程下拉格朗日中值定理的表达形式。

柯西中值定理粗略地表明,对于两个端点之间的给定平面弧,至少有一个点,使曲线在该点的切线平行于两端点所在的弦。

小编推荐

上一篇:determine的名词
下一篇:数词的用法

相关文章

  • 一元三次方程快速解法有哪些

    一元三次方程快速解法有、因式分解法、一种换元法、卡尔丹公式法等多种方法,本篇我们将详细介绍其内容。因式分解法因式分解法不
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告