专为高中生提供有价值的资讯
反函数性质:函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射等。
(1)函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)一段连续的函数的单调性在对应区间内具有一致性;
(6)严增(减)的函数一定有严格增(减)的反函数;
(7)反函数是相互的且具有唯一性;
(8)定义域、值域相反对应法则互逆(三反);
(9)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I}内也可导;
(10)y=x的反函数是它本身。
1、反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。
2、互为反函数的两个函数的图像关于直线y=x对称。
3、原函数若是奇函数,则其反函数为奇函数。
4、若函数是单调函数,则一定有反函数,且反函数的单调性与原函数的一致。
5、原函数与反函数的图像若有交点,则交点一定在直线y=x上或关于直线y=x对称出现。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告