专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学切线方程怎么求

切线方程怎么求

时间:2019-12-07作者:风飘过一键复制全文保存为WORD
专题:

对函数求导(导函数为y=2x+3),然后求出在x=1时的导数y,此时y的值为经过x=1时的切线的斜率(根据导数的几何意义),知道切线的斜率了,然后再知道一个点的坐标就可以求出。

切线方程

切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。

例题解析

Y=X2-2X-3在(0,3)的切线方程

解:因为点(0,3)处切线的斜率为函数在(0,3)的导数值,函数的倒数为:y=2x-2,

所以点(0,3)斜率为:k=2x-2=-2

所以切线方程为:y-3=-2(x-0)(点斜式)

即2x+y-3=0

所以y=x^2-2x-3在(0,3)的切线方程为2x+y-3=0。

一条直线的切线方程和法线方程的关系

法线方程

法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。

区别

数学上一般不研究直线的切线方程,因为直线的切线方程就是它本身;可推知一条直线的切线与它的法线垂直;两条互相垂直的直线,两条直线的斜率乘积等于-1,即k1*k2=-1。

对于直线,法线是它的垂线;对于一般的平面曲线,法线就是切线的垂线;对于空间图形,是垂直平面。

小编推荐

相关文章

  • 一元三次方程快速解法有哪些

    一元三次方程快速解法有、因式分解法、一种换元法、卡尔丹公式法等多种方法,本篇我们将详细介绍其内容。因式分解法因式分解法不
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告