专为高中生提供有价值的资讯
积分中值定理的证明:设f(x)在[a,b]上连续,且最大值为M,最小值为m,最大值和最小值可相等。由估值定理及连续函数的介值定理可证明积分中值定理。
定理证明
什么叫定积分中值定理
如果函数f(x)在闭区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使∫abf(x)dx=f(ξ)(b-a).(a≤ξ≤b)。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告