专为高中生提供有价值的资讯

当前位置:来高考高考复习高中数学学二次函数的窍门

学二次函数的窍门

时间:2019-12-03作者:海中的鲨鱼一键复制全文保存为WORD
专题:

在数学中,二次函数最高次必须为二次,二次函数表示形式为y=ax²+bx+c(a≠0)的多项式函数。二次函数的图像是一条对称轴平行于y轴的抛物线。

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数的三种表达式

一般式:y=ax²+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b²)/4ax₁,x₂=(-b±√b²-4ac)/2a

二次函数图像与X轴交点的情况

当△=b²-4ac>0时,函数图像与x轴有两个交点。

当△=b²-4ac=0时,函数图像与x轴只有一个交点。

当△=b²-4ac<0时,函数图像与x轴没有交点。

二次函数的应用

1、二次函数的图象、性质广泛应用于实际生活中,主要有最大利益的获取,最佳方案的设计、最大面积的计算等问题。

2、解决最值问题的基本思路:(1)认真审题,分清题中的已知和未知,找出数量间的关系;(2)确定自变量x及函数y;(3)根据题中实际数量的相等关系,建立函数关系模型;(4)分析表信息、利用待定系数法、配方法等求出最值。

小编推荐

相关文章

  • 一元三次方程快速解法有哪些

    一元三次方程快速解法有、因式分解法、一种换元法、卡尔丹公式法等多种方法,本篇我们将详细介绍其内容。因式分解法因式分解法不
  • 高等数学重要知识点总结 知识点归纳

    在平日的学习中,大家都背过各种知识点吧?今天小编给大家带来了高等数学重要知识点总结相关资料,一起来看看吧。高等数学知识点

Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告