专为高中生提供有价值的资讯
不一定。若f(x)为奇函数,且在x=0处有意义,则f(0)=0。奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
f(0)=0是否为奇函数
f(0)=0,不一定是奇函数,如:f(x)=x²,满足f(0)=0,但这明显是个偶函数;
奇函数也不一定有f(0)=0,如:f(x)=1/x,这是一三象限的反比例函数,关于原点对称,是奇函数,但明显没有f(0)=0这一结论。
正确的说法是这样的:对于奇函数而言,若0属于定义域,则必有f(0)=0;
若f(0)≠0,则必有0不属于定义域;
奇函数一定为f(0)=0吗
奇函数从函数关系式上看要满足f(-x)=-f(x),当x=0时,推导出f(-0)=-f(0),即f(0)=0,从函数图象上看,图象是关于原点(0,0)对称的。
Copyright 2019-2029 http://www.laigaokao.com 【来高考】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告